Human Parvovirus B19 Infection Causes Cell Cycle Arrest of Human Erythroid Progenitors at Late S Phase That Favors Viral DNA Replication

Yong Luo,a Steve Kleiboeker,a Xuefeng Deng,a Jianming Qiu

Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USAa; Viracor-IBT Laboratories, Lee’s Summit, Missouri, USAb

Human parvovirus B19 (B19V) infection has a unique tropism to human erythroid progenitor cells (EPCs) in human bone marrow and the fetal liver. It has been reported that both B19V infection and expression of the large nonstructural protein NS1 arrested EPCs at a cell cycle status with a 4 N DNA content, which was previously claimed to be “G2/M arrest.” However, a B19V mutant infectious DNA (M20mtAD2) replicated well in B19V-semipermissive UT7/Epo-S1 cells but did not induce G2/M arrest (S. Lou, Y. Luo, F. Cheng, Q. Huang, W. Shen, S. Kleiboeker, J. F. Tisdale, Z. Liu, and J. Qiu, J. Virol. 86:10748–10758, 2012). To further characterize cell cycle arrest during B19V infection of EPCs, we analyzed the cell cycle change using 5-bromo-2-deoxyuridine (BrdU) pulse-labeling and DAPI (4',6-diamidino-2-phenylindole) staining, which precisely establishes the cell cycle pattern based on both cellular DNA replication and nuclear DNA content. We found that although both B19V NS1 transduction and infection immediately arrested cells at a status of 4 N DNA content, B19V-infected 4 N cells still incorporated BrdU, indicating active DNA synthesis. Notably, the BrdU incorporation was caused neither by viral DNA replication nor by cellular DNA repair that could be initiated by B19V infection-induced cellular DNA damage. Moreover, several S phase regulators were abundantly expressed and colocalized within the B19V replication centers. More importantly, replication of the B19V wild-type infectious DNA, as well as the M20mtAD2 mutant, arrested cells at S phase. Taken together, our results confirmed that B19V infection triggers late S phase arrest, which presumably provides cellular S phase factors for viral DNA replication.

Received 16 August 2013 Accepted 11 September 2013
Published ahead of print 18 September 2013
Address correspondence to Jianming Qiu, jqiu@kumc.edu.
Copyright © 2013, American Society for Microbiology. All Rights Reserved.

Copyright © 2013, American Society for Microbiology. All Rights Reserved.
UT7/Epo-S1 cells with both the wild-type B19V infectious clone (M20) and the M20mTAD2 mutant.

MATERIALS AND METHODS

Cells and virus. (i) CD36⁺ EPCs. Human bone marrow CD34⁺ hematopoietic stem/progenitor cells (HSCs) were positively isolated using a direct immunomagnetic CD34⁺ MicroBead labeling system and were purchased from AllCells, LLC (Alameda, CA; catalog no. ABM017F). The CD34⁺ HSCs were ex vivo expanded in Wong medium (19, 20). On day 4 of culture, the cells were frozen as stocks. The day 4 HSCs were thawed and cultured in Wong medium under normoxic conditions (21% O₂ and 5% CO₂) until day 7. The day 7 cells were then transferred to hypoxic conditions (1% O₂ and 5% CO₂) for 2 days before infection (22).

(ii) UT7/Epo-S1 cells. UT7/Epo-S1 cells (17) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum and 2 units/ml of erythropoietin (Epogen; Amgen, Thousand Oaks, CA) at

![FIG 1](http://jvi.asm.org/)

B19V infection induces late S phase arrest

(A and B) Cell cycle analysis of BrdU-pulse-labeled CD36⁺ EPCs. (A) CD36⁺ EPCs were mock infected or infected with B19V. (B) CD36⁺ EPCs were transduced with the lentivirus lenti-p6-NS1, which expresses a codon-optimized NS1, or GFP-expressing lentivirus (shScram) (34) as a control. At the indicated times p.i. or p.t., the cells were incubated with BrdU for 1 h, followed by treatment with 1 N HCl (30). The treated cells were costained with anti-B19V NS1 and anti-BrdU antibodies and DAPI for cell cycle analysis by flow cytometry. The percentage of cells in each phase was gated in the NS1⁺ cell population of the B19V-infected or lenti-P6-NS1-transduced cells, in the GFP⁺ cell population of the control lentivirus-transduced cells, and in the whole population of mock-infected cells. In each group, data on both DAPI staining alone (top) and DAPI-BrdU costaining (bottom) are shown. The numbers in the histograms resulting from only DAPI staining are percentages of the cell population at 2 N, intermediate (Int.), and 4 N DNA content, respectively, as indicated. The numbers in each DAPI-BrdU costaining histogram are percentages of the cell populations with all BrdU-positive (BrdU⁺), at a 4 N DNA content with BrdU-positive (BrdU⁺/DNA⁴N, in red), and at a 4 N DNA content but with BrdU-negative (BrdU⁻/DNA⁴N) staining, as indicated. (C and D) Statistical analysis. The statistical analyses of the percentages of all the cell populations with BrdU⁺ (C) and the cell population with BrdU⁻ but only at a 4 N DNA content (BrdU⁻/DNA⁴N) (D), obtained from three independent experiments, are shown. The data are shown as means ± standard deviations. P values were determined using Student’s t test.
37°C under normoxic conditions. The cells were kept under hypoxic conditions for 48 h before performing experiments.

(iii) B19V. Viremic plasma sample P265 (\(1 \times 10^{11}\) genome copies [gc/ml]) was obtained from ViraCor Laboratories (Lee’s Summit, MO). Virus infection was performed at a multiplicity of infection (MOI) of 1,000 gc/cell (3–5 fluorescence focus-forming units per cell), as described previously (25, 34).

B19V infectious clone and nucleofection. B19V infectious clone pM20 (23), an NS1 endonuclease knockout mutant (pM20\(\text{endo}^{-}\)), and an NS1 putative transactivation domain (TAD2) mutant (pM20\(\text{TAD}^{+}\)) were described previously (25). Before nucleofection, the B19V DNA (M20 and its mutants) was excised from the clones by SalI digestion and purified. The SalI-digested backbone DNA was used as a control. All DNAs were nucleofected using an Amazka nucleofector (Lonzia Inc., NJ) as previously described (35).

Lentivirus and transduction. A plenti-p6-B19V-optimized NS1 plasmid (p6-NS1) and p6-NS1-based vectors that express NS1 mutant NS1 (mTAD2) and NS1 (endo\(\text{—}\)), respectively, have been described previously (25, 34). For immunofluorescence analysis of proliferating cell nuclear antigen (PCNA), the cells were permeabilized with 90% methanol. Confocal images were taken with an Eclipse C1 Plus confocal microscope (Nikon) controlled by Nikon EZ-C1 software.

Southern blot analysis. Low-molecular-weight DNA (Hirt DNA) was extracted from cells as described previously (35, 36). Southern blotting was performed as described previously using the SalI-digested M20 DNA, which contains a full-length B19V genome (34, 35), as a probe.

BrdU-based dot blot assay. CD36\(^{+}\) EPCs were mock or B19V infected. At 12 h, 24 h, and 48 h postinfection (p.i.), the infected cells were labeled with BrdU (30 \(\mu\)M) for 1 h and collected. Equivalent numbers of cells were used to prepare total DNA and Hirt DNA. Total DNA (both cellular DNA and viral DNA) was extracted using the DNeasy Blood and Tissue Kit (Qiagen). The kit has been optimized for purification of total DNA from virus-infected tissues and had a recovery rate of over 90% for parvoviral DNA (30). The extracted DNA was diluted in 100 \(\mu\)l of deionized \(\text{H}_{2}\text{O}\). To expose the BrdU epitopes in double-stranded DNA (dsDNA), the DNA samples were heated at 95°C for 5 min and immediately placed on ice. Five microliters of the denatured DNA samples was pipetted onto a nitrocellulose membrane. The DNA dots on the membrane were analyzed by a BrdU-based dot blot assay that we recently established for studying DNA replication in minute virus of canines (MVC) (30).

Comet assay. Comet assay, a single-cell gel electrophoresis assay, was performed following the manufacturer’s instructions using a kit purchased from Cell Biolabs, Inc. (San Diego, CA). Briefly, cells were mixed with 1% low-melting-point agarose, and slides were coated with the mixture. The slides were then treated under alkaline conditions, electrophoresed, and stained. The stained slides were visualized under a Nikon Eclipse C1 Plus confocal microscope.

BrdU incorporation assay and flow cytometry. The BrdU incorporation assay was performed following a method that we established for the analysis of MVC infection-induced 5 phase arrest (30). Briefly, BrdU was added to the cell culture medium at a final concentration of 30 \(\mu\)M and incubated for 1 h. After BrdU incorporation, cells were collected, fixed in 1% paraformaldehyde for 30 min, and permeabilized with 0.05% Triton X-100 for 20 min. After permeabilization, the cells were treated with 1 M HCl for 30 min to denature dsDNA for binding of the BrdU epitopes with an anti-BrdU antibody (clone B44 [37]). The cells were then costained with anti-pH 3\(\text{S}^{28}\) and anti-NS1 antibodies and DAPI. Confocal images were taken at a magnification of \(\times 100\). (B) Flow cytometry. The cells were fixed and costained with anti-pH 3\(\text{S}^{28}\) and anti-NS1 antibodies and DAPI. NS1\(^{+}\) cells were selected for flow cytometry analysis (30). Cells treated with nocodazole (5 mg/ml) for 16 h were used as a positive control for anti-pH 3\(\text{S}^{28}\) staining. The numbers indicate the percentages of the pH 3\(\text{S}^{28}\)-positive cells with a 4 N DNA content in each group. A statistical analysis of the percentages was performed from three independent comet assays. The data are shown as means ± standard deviations.

![Flow cytometry analysis](https://jvi.asm.org/Downloaded-from-http://jvi.asm.org)
cells in each phase was gated in the NS1 cell population of the B19V-infected or lenti-p6-NS1-transduced cells, in the GFP cell population of the control lentivirus-transduced cells, and in the whole population of mock-infected cells.

Antibodies used in the study. Rat anti-B19V NS1 polyclonal antibody (serum) was produced previously (21). Other antibodies obtained commercially include the following: anti-MCM2 and anti-MCM5 (Epitomics, Burlingame, CA); anti-BrdU (clone B44) and anti-PCNA antibodies (BD Biosciences, San Jose, CA); anti-α-actin (Sigma, St. Louis, MO); anti-cyclin A, anti-replication factor C1 (RFC1), and anti-polymerase (Pol) (Santa Cruz Biotechnology, Santa Cruz, CA); anti-cyclin B (Abcam, Cambridge, MA); and anti-phosphorylated histone 3 at serine 28 (pH3S28) (Abcam, Cambridge, MA). All the secondary antibodies were purchased from Jackson ImmunoResearch Laboratories, Inc., West Grove, PA. The antibody dilutions used for Western blotting and immunofluorescence analysis were those suggested by the manufacturers.

RESULTS

B19V-infected CD36 EPCs are arrested at a phase with a 4 N DNA content but take up BrdU. We and others have analyzed the cell cycle change of B19V-infected CD36 EPCs by DAPI staining of DNA alone and revealed that infected cells were quickly arrested at a phase with a 4 N DNA content (24, 25). However, a limitation of the DNA-staining method is that it prevents us from differentiating cells at the border of two phases of the cell cycle, e.g., G1 versus early S phase and G2 versus late S phase. Recently, by incorporating BrdU pulse-labeling and flow cytometry, we have precisely analyzed the cell cycle change of MVC-infected cells and identified an intra-S phase arrest during MVC infection (30).

To dissect the 4 N phase arrest of B19V-infected CD36 EPCs, we pulse-labeled infected cells with BrdU and performed cell cycle analysis by flow cytometry using costaining of an anti-BrdU antibody and DAPI. Because of the nature of primary CD36 EPCs, a long processing time, and the harsh conditions of HCl treatment, a large portion of dead cells caused by B19V infection or NS1 transduction became cell debris and were lost during processing. The dead cells were further excluded based on FSC versus SSC dot plot analysis during flow cytometry analysis. In comparison with mock-infected cells, B19V infection caused >90% of NS1 EPCs to have a 4 N DNA content as early as 12 h p.i. (Fig. 1A, B19V cell...
Viral DNA replication contributes minimally to BrdU incorporation. BrdU incorporation could be contributed by several sources: (i) viral DNA replication, (ii) DNA repair-associated DNA synthesis, and (iii) cellular DNA replication in S phase. In addition, we also observed that a small portion of NS1-transduced cells stayed at G1 phase (10.7%, 13.8%, and 16.9% at 12, 24, and 48 h p.i., respectively) (Fig. 1B, BrdU). However, the portion of infected cells at G1 phase was even smaller in B19V-infected EPCs (4.9%, 3.8%, and 5.4% at 12, 24, and 48 h p.i., respectively) (Fig. 1A, BrdU).

To determine whether B19V-infected and NS1-transduced CD36+ EPCs enter mitosis, we performed immunofluorescence analysis for cyclin B, a mitotic cyclin that is shuttled to the nucleus when it triggers mitosis entry (38). We found that cyclin B was trapped in the cytoplasm of either B19V-infected or NS1-transduced cells, compared with the cyclin B in control cells (Fig. 2A), suggesting that both infected and transduced cells are arrested at G2 or a “pseudo-G2” phase. In concert, pH 3S28, a marker of mitosis (39), was totally gone in both B19V-infected and NS1-transduced cells compared with the pH 3S28 in control cells (Fig. 2B), confirming that the cells were not able to enter mitosis.

Taken together, our results suggest that B19V-infected CD36+ EPCs have a 4 N DNA content, still incorporate BrdU, and are arrested at a phase with an increase in cytoplasmic cyclin B and an absence of phosphorylated histone 3 (BrdU+/DNA4N/cyclin B+/pH 3S28−), whereas B19V NS1 expression mainly arrests cells at a bona fide G2 phase (BrdU−/DNA4N/cyclin B+/pH 3S28−) without BrdU incorporation.

FIG 4 B19V infection does not induce significant cellular DNA damage. CD36+ EPCs were mock infected, infected with B19V, or transduced with the lentivirus lentip6-NS1 (NS1). (A) At 18 h p.i., half of the cells were fixed and costained with a rat anti-NS1 antibody and DAPI to quantify the percentage of B19V-infected cells by immunofluorescence assay. Confocal images were taken at a magnification of ×40 (objective lens). (B) The other half of the cells were collected and analyzed for damaged DNA (Comet assay) using a comet assay kit. Positive controls (H2O2) were obtained by treating mock-infected cells with 100 μM H2O2 at 4°C for 20 min. The images were taken at a magnification of ×40. (C) A statistical analysis of the percentage of cells with damaged DNA was performed from three independent comet assays. In each experiment, cells were counted on six randomly selected fields with ~100 to 200 cells each. The data are shown as means ± standard deviations.
our previous study, we confirmed that DNA replication of the parvovirus MVC does not contribute significantly to BrdU uptake in the BrdU incorporation assay (30). To ensure this was true during B19V infection of CD36⁺ EPCs, we extracted total DNA and low-molecular-weight (Hirt) DNA from BrdU-labeled infected cells and examined the BrdU uptake in each sample using a BrdU dot blot assay, as we described previously (30). As shown in Fig. 3A, the amount of viral DNA extracted by the Hirt DNA preparation method was nearly the same as that extracted by the total-DNA preparation method. However, the Hirt DNA preparation method was not able to eliminate all cellular DNA, as the mock-infected group also had some weak signals (Fig. 3B, row 3). Thus, the BrdU incorporation in Hirt DNA samples contained both viral DNA and a small amount of cellular DNA (Fig. 3A, row 4). The BrdU incorporation in viral DNA was quantified by subtracting the background BrdU signal, which appeared in the Hirt DNA of the mock-infected group (Fig. 3B, row 3), from the signal of the Hirt DNA of the B19V-infected group (Fig. 3A, row 4) at the same time p.i. The quantification data showed that the BrdU incorporation in viral DNA was only 13.6% of the BrdU signal in

FIG 5 Immunofluorescence staining of cellular S phase factors. At 24 h p.i. (A) and 48 h p.i. (B), mock- and B19V-infected CD36⁺ EPCs were fixed and costained with anti-B19V NS1 and an antibody against one of the S phase factors, as indicated, and DAPI. The images were taken at a magnification of ×100.
total DNA at 12 h p.i. and was much lower at 24 h and 48 h p.i. (Fig. 3C). These results confirmed that the majority of BrdU is actually incorporated in cellular DNA.

Collectively, our results presented so far indicated that the BrdU incorporation in B19V-infected cells, which are arrested at a phase with a 4 N DNA content, comes from cellular DNA synthesis triggered by DNA repair or from cellular DNA replication in late S phase.

B19V infection does not induce significant cellular DNA damage. B19V infection induces a DNA damage response (DDR) (25, 34). We wondered whether cellular DNA damage is caused during B19V infection, which could be followed by cellular DNA repair events (40). To determine whether the BrdU uptake in B19V-infected CD36+ EPCs is due to cellular DNA repair, we performed a comet assay (41, 42), as we described previously (30), to assess if there is any cellular DNA damage in B19V-infected CD36+ EPCs. At 48 h p.i./p.t., ~60% and ~80% of CD36+ EPCs, respectively, as shown by anti-NS1 staining, were infected with B19V or transduced by lenti-p6-NS1 (Fig. 4A); however, the population of comet-positive (Comet+) cells (~10%) in infected or transfected cells was not significantly increased compared with that in the mock-infected cells (Fig. 4B and C). This result confirmed that B19V infection does not induce severe cellular DNA damage, suggesting that the BrdU incorporation in B19V-infected CD36+ EPCs likely does not come from cellular DNA repair.

Together with the aforementioned evidence that B19V DNA replication does not contribute significantly to BrdU incorporation in B19V-infected EPCs (Fig. 3), our results strongly suggested that B19V infection mainly induces cells arrested at late S phase (BrdU+/DNA45/cyclin B+/pH 328+) during early infection.

Cellular DNA replication factors colocalize with B19V NS1 in B19V DNA replication centers. To confirm the S phase status of B19V-infected CD36+ EPCs, we examined the localization of five S phase (DNA replication) factors, i.e., cyclin A, PCNA, RFC1, MCM2, and Pol δ, since they have been reported to play roles in parvovirus DNA replication (29, 43–45). We found that these five S phase factors were abundantly expressed in NS1+ CD36+ EPCs and colocalized with the foci stained for B19V NS1, which are the B19V replication centers (34), over the course of infection (Fig. 5). We then attempted to knock down the S phase factors to explore their roles in B19V DNA replication. Since they are required for cell proliferation, we chose the abundantly expressed MCM2/MCM5 for this purpose. The MCM complex is thought to be the major DNA helicase that is abundantly and redundantly expressed for eukaryotic-cell DNA replication (46).

Indeed, individual knockdown of 50% of MCM2 or MCM5 did not obviously change the cell cycle pattern compared to control-transduced CD36+ EPCs (Fig. 6A and B, shScram.); however, the major species of B19V replicated DNA (replicative-form [RF] DNA) decreased >3-fold in either MCM2 shRNA (shMCM2)- or MCM5 shRNA (shMCM5)-treated EPCs compared with those in scrambled shRNA (shScram.)-treated EPCs (Fig. 6C). This result suggested that B19V DNA replication was significantly inhibited by knockdown of MCM2 or MCM5 in infected EPCs.

Collectively, these results demonstrated that although B19V-infected EPCs were arrested at a 4 N DNA content and had cytoplasmically accumulated cyclin B, S phase factors were expressed and colocalized within the B19V replication centers in the nuclei, which likely facilitate B19V DNA replication.

A mutant B19V infectious DNA that abolishes cell cycle arrest at a 4 N DNA content induces S phase arrest in transfected UT7/Epo-S1 cells. To examine specifically the cell cycle status of the cells that facilitate B19V DNA replication, we took advantage of the DNA replication of the B19V infectious DNA (M20) in UT7/Epo-S1 cells cultured under hypoxic conditions (22, 25). We have identified a B19V mutant infectious DNA, M20mTAD2, that replicates efficiently in UT7/Epo-S1 cells but without significantly arresting the cells at a 4 N DNA content (25). To determine precisely the cell cycle change during the replication of this mutant, we transfected the wild-type M20 DNA and its mutants, M20mTAD2 and M20indo (a nonreplicative mutant as a negative control [25]), into UT7/Epo-S1 cells and performed a BrdU incorporation assay at 48 h posttransfection. We found that M20...
and M20mTAD2 replicated in UT7/Epo-S1 cells at similar levels, as evidenced by the DpnI digestion-resistant bands (Fig. 7A, arrows). As we previously reported (47), electroporation and NS1/11-kDa expression caused significant death of UT7/Epo-S1 cells. Dead cells appearing as cell debris were lost during the staining procedure and further excluded by FSC versus SSC dot plot analysis in flow cytometry, which allowed us to analyze the cell cycle of the live cells by the BrdU incorporation assay. The results showed that 64.7% and 64.0% of the NS1+ cells in M20- and M20mTAD2-transfected cells, respectively, were arrested at S phase (BrdU+) compared with 32.3% of the control cells (Fig. 7B). Notably, M20-transfected cells were arrested more at late S phase (>80% of the BrdU+ cells at DNA4N), while M20mTAD2 transfection arrested cells at early S phase (>65% of the BrdU+ cells at DNA2N).

FIG 7 B19V infectious DNAs M20 and M20mTAD2 replicate in UT7/Epo-S1 cells at S phase. (A and B) Wild-type B19V infectious DNA M20, the endonuclease knockout mutant M20endo- DNA, and the mTAD2 mutant M20mTAD2 DNA were transfected into UT7/Epo-S1 cells. (A) Southern blot analysis of B19V DNA replication. At 48 h posttransfection, cells were collected and prepared for Hirt DNA samples. The samples were digested with (+) or without (−) DpnI and subjected to Southern blotting. The arrows indicate DpnI-resistant bands. (B) Cell cycle analysis of M20-based B19V DNA-transfected cells. At 48 h posttransfection, the cells were labeled with BrdU. (C) Cell cycle analysis of cells transduced with NS1-expressing lentiviruses. UT7/Epo-S1 cells were transduced with either the lentivirus lenti-p6-NS1, which expresses wild-type NS1 (NS1), or lenti-p6-NS1-based lentiviruses that express NS1 mutant NS1(mTAD2) and NS1(endo−), respectively, and a GFP-expressing control lentivirus (Control). At 48 h p.t., the cells were labeled with BrdU for 1 h. NS1+ (or GFP+) cells were selected for cell cycle analysis by flow cytometry. The numbers are cell populations in S phase (BrdU+) and G2/M phase (BrdU+/DNA4N), as indicated. B19V infection of UT7/Epo-S1 cells was used as a control. A statistical analysis of the percentage of cells at each phase was performed from three independent experiments. The data are shown as means ± standard deviations.
In addition to the N phase arrest, B19V NS1 also induced G1 phase arrest of infected UT7/Epo-S1 cells (10.9% at G1 versus 81.5% at G2), and this G1 arrest is more significant in NS1-transfected cells (24.5% versus 32.8%) (16). The G1 checkpoint has also been identified as a DDR that activates ATR/Chk1 signaling (25, 34). ATR/Chk1 activation is known to be able to induce intra-S phase arrest [48]. It is likely that B19V DNA replication-induced DDR is involved in the induction of S phase arrest. In parvovirus MCV infection, virus infection-induced DDR activates ATM-SMC1 signaling, which arrests infected cells at the intra-S phase (30). We speculate that there is a feedback loop during autonomous parvovirus replication: viral DNA replication induces a DDR; the DDR activation is known to be able to induce intra-S phase arrest (48). It is likely that B19V DNA replication-induced DDR is involved in the induction of S phase arrest. In parvovirus MCV infection, virus infection-induced DDR activates ATM-SMC1 signaling, which arrests infected cells at the intra-S phase (30). We speculate that there is a feedback loop during autonomous parvovirus replication: viral DNA replication induces a DDR; the DDR activates ATM or ATR signaling, which arrests the cells at S phase; and the S phase environment, in turn, facilitates virus DNA replication.

In addition to the N phase arrest, B19V NS1 also induced G1 phase arrest of infected UT7/Epo-S1 cells (10.9% at G1 versus 81.5% at G2), and this G1 arrest is more significant in NS1-transfected cells (24.5% versus 32.8%) (16). The G1 checkpoint has also been observed in replication of other paroviruses (26, 49, 50). In CD36- EPCs, however, fewer NS1+ cells stayed at G1 phase during infection and NS1-lentiviral transduction (4.9 to 5.4% and 10.7 to 16.9%, respectively). The cells that stayed at G1 phase are either the NS1+ cells that exited from mitosis or the NS1+ cells arrested at G1. Since NS1+ cells did not enter mitosis, as indicated by anti-ph 32P staining (Fig. 2B), we conclude that NS1 also induces a minor G1 arrest in CD36- EPCs.

A clear progression of G1 to early and late S phase was not observed at early infection (Fig. 1) and in previous studies (17, 24, 25). It is possible that during B19V infection, infected cells are arrested at S phase by the DDR, which is presumably induced by the invaded aberrant viral genome (51) and a low level of viral DNA replication before expression (detected) of NS1 at early infection. On the other hand, expression of NS1 tends to push the cells abruptly into G2 phase but is not able to complete this step during early infection. The incomplete G2 phase arrest, i.e., late S phase arrest, still allows a low level of cellular DNA replication to reserve S phase factors for facilitating viral genome amplification. This theory can explain why the M20-mTAD2 mutant, which loses the capability to induce G1 phase arrest, replicates in UT7-Epo/S1 cells during the entire S phase (BrdU+).

B19V NS1, a multifunctional protein during virus replication (52, 53), also induces G2/M arrest (Fig. 1B) (16, 24, 25) and apoptosis (18, 47, 54, 55). The G2 phase arrest has been shown to be induced by deregulation of the E2F4/E2F5 transcription factors (24). However, the mechanism underlying NS1-induced apoptosis is largely unknown (56). It is possible that NS1-induced G2 arrest is one of the functions through which NS1 inhibits erythropoiesis and kills infected erythroid progenitors for progeny virion release, whereas the late S phase arrest is a compromised transition situation resulting from the G1 phase arrest by NS1 and the intra-S phase arrest caused by the DDR. On the other hand, MVC NS1 per se does not induce G2 phase arrest and apoptosis (57), and therefore, MVC infection appears only during the intra-S phase arrest (30).

In summary, parvovirus has a compact genome that does not express a viral protein specifically to manipulate the S phase of the cell cycle. Except for the Rep78 protein of Dependoparvovirus AAV (58), the large nonstructural proteins of autonomous paroviruses do not arrest cells in S phase. Thus, autonomous paroviruses evolve to find a way through DDR to arrest cells in S phase that facilitates viral DNA replication. It is clear now that B19V also uses this approach to take advantage of the S phase factors for viral DNA replication. Finally, we demonstrated that expression of NS1 per se is responsible for the true G2/M (4 N/BrdU+) phase arrest.

ACKNOWLEDGMENTS

This work was supported by PHS grants R01 AI070723 from NIAID, R21 HL106299 from NHLBI, and P20 RR016443 from the NCRR COBRE program.

We thank Fang Cheng, Aaron Yun Chen, and Sai Lou for their help in this study.

REFERENCES

